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A calculation is made of the exact probability distribution of the two-dimen- 
sional displacement of a particle at time t that starts at the origin, moves in 
straight-line paths at constant speed, and changes its direction after exponen- 
tially distributed time intervals, where the lengths of the straight-line paths and 
the turn angles are independent, the angles being uniformly distributed. This 
random walk is the simplest model for the locomotion of microorganisms on 
surfaces. Its weak convergence to a Wiener process is also shown. 

KEY W O R D S :  Two-dimensional random walk; cell motion on surfaces; 
exact probability distribution. 

1. I N T R O D U C T I O N  

Several experimental studies on the motion of microorganisms on planar 
surfaces suggest that this motion can be approximately described as a ran- 
dom broken line. I1 5~ After a straight-line path of random length, the 
microorganism appears to try to find a new direction of linear motion and 
then continues to move in this direction. 

Nossal and W e i s s  (6'7) developed a model for these locomotions and a 
method for calculating asymptotically the mean and the covariance matrix 
of the displacement of these random walks. In this paper we consider the 
case when the lengths of the linear segments are exponentially distributed 
(according to the experimental results in Ref. 3), the speed is always con- 
stant, the turn angles all have a uniform distribution, and all path lengths 
and angles are stochastically independent. This can be considered as a 
model for cell motion, if no chemical stimuli are present. Under these 
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assumptions the exact probability distribution of the displacement X(t) of 
the microorganism at time t can be derived in closed form, which turns out 
to be astonishingly simple. The density of X(t) on {x~ ~21 Ix] < t} is given 
by Eq. (1.3) (2 i is the mean length of a linear segment), which is the main 
result of this paper. 

We thus consider the random walk of a particle in ~2 starting at the 
origin and consisting of straight-line paths separated by discrete turns. The 
motion along any path is assumed to have constant speed 1. Let 41, 42 .... 
be the random lengths of the straight-line paths and 01, 02,.. be the ran- 
dom angles. We assume that 41, 01, 42, 0z,... are independent, that 41, 42,--- 
are exponentially distributed with mean 1/2, and that 01, 02,.. have a 
uniform distribution on [0, 2~). Let y ( , )=  4, exp(i0,). The particle travels 
in direction 0,,+ l during the time interval [Z~'_ 1 ~,, Y'.~+I 1 ~,,). If t is in this 
interval, say 

t= ~ ~n+~4m+, (1.1) 

for some c~ E [0, 1), the position of the particle at time t is given by 

X( t )=  ~ yi~)+~y(,,,+l) (1.2) 

(position at time Y~',['= 14, plus c~ times the step in direction Om+ 1)" 
Clearly, IX(t)] ~< t, where I'l denotes Euclidean length. We shall show 

that on {x ~ R 2] ]x] < t}, X(t) has the density 

f~(x) --~-~ (t 2 - Ix l2 )  -1/2 exp [-)~(t 2 - Ixl2) 1/2 - 2 t ]  (1.3) 

It is then obvious that the complete probability distribution of X(t) is given 
by 

P(X(t) ~ dx) = L ( x )  dx + e-;" #,(dx) (1.4) 

where #, is the uniform distribution on the circle {x~ ~2] IX ] = /,} (the 
second term is due to the fact that with probability e ~' the direction does 
not change up to time t). 

A particle using this random mechanism to rule its walk might be con- 
sidered as trying to make it as difficult as possible for an observer to 
predict its future location. Due to the lack of memory of the exponential 
distribution, it is impossible to learn from experience about the remaining 
time of locomotion of the particle in the actually observed direction. The 
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equidistribution of new directions independent of the past excludes any 
preferences that would facilitate prediction. 

It should be remarked that the displacement of the particle at the time 
of the nth turn is the sum of n independent, rotationally invariant random 
vectors of exponentially distributed length with mean 1/2 and therefore has 
the density 

2212~F(n/2)] l(2lxl/2)(n/2)1K(,,/2)1(21xt), x ~  2 (1.5) 

(1.5) can be derived as follows: In general, for a rotationally invariant, two- 
dimensional probability density p(x) =/~(r), r = Ixl, with Fourier transform 
(p(u) = ~(s), s = ]ul, we have 

(o(s) = 2~ Jo(sr) rfi(r) dr 

/5(r) = (2~)-1 Jo(st) sO(s ) ds 

(see Ref. 10, p. 523; the second equation follows by Hankel inversion). In 
our case, each y(i) has the density (2~ Ixi) -J 2e -:lxl and thus the charac- 
teristic function 

~p(u)= Jo(lulr) 2e ; .rdr=[l+([u[/2)2] 1/2 

(see Ref. 11, p. 686, formula 6.565.4). 
In light of (1.5), the simple formula (1.3) for f , (x)  is striking. One 

should mention that the characteristic function ~b, of X(t) apparently can- 
not be given in closed form. Tedious calculations lead to the following 
representation for 8,: 

= ( - 1 )  *+ /  62, (tlul) 2j 
j = O ~  i 

+ Jo(tlul)e -~' 

where bo, bl, b2 .... are defined recursively by 

b0 = l - e  -~', b ~ = l  (kbk_l/2t) for k~>l 

The probability distribution (1.4) (or variants of it) apparently has not yet 
occured in other contexts. 

Figure 1 shows the curves o f f , ( x )=h , ( l x l )  for t =  1 and 2 =0.1, 0.5, 1, 
2, 5. Each f ,  is unbounded for Fxl near t (see the remark at the end of Sec- 
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Fig. 1. Plot of h~(u) for different values of 2. 

t ion2).  For 2 t >  l the function h," [0, t ) -~ (0 ,  c~) decreases in 
[ 0 , ( t 2 _ 2  2)1/2] and increases in [ ( t z - 2 - z ) u 2 ,  t) up to infinity. The 
minimal value is 

hi((12 - 2 -  2 )  1 / 2 )  = ,~2/2~ze;.t-t 

If 2t <<. 1, h, is monotone increasing. However, h', is quite small outside 
some neighborhood of t, so that h,(u) is nearly constant for u not close to t. 

Note that 2t is the mean number of turns in the time interval [0, t). If 
2t <~ 1, P(X(t)e dx) is an increasing function of lxI, so that the probability 
that X(t) takes a value x with Ix] close to t is higher than the 
corresponding probability for any other value with smaller distance to the 
origin. A similar situation occurs for the so-called arcsine distribution with 
density [ r ( l - r ) ]  -Jn, re(O, 1) (see, e.g., Ref. 9, ChapterlII). If 2 t > l ,  
both extreme values 0 and t of the range of IX(t)[ are maxima of h,; 
however, h, is unbounded only near t. It is astonishing that the 
phenomenon that P(X(t)edx) remains maximal in the neighborhood of 
Jxl = t does not disappear for large 2t. 
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If t ~ ~ and 2 ~ oo in such a way that t/Z converges, say t/2 ~ ~ > O, 
the density f ,  satisfies 

.f,(x)= ( 2 7 c ) - ~ [ , t / Z )  - ( i x [ / Z ) 2 ]  t/2 e x p (  Ixl22/20) 
?xl/2 .<[ where (t 2 -  x - ;  ~ -.~ 0 ~< t. Therefore, 

f~(x) ~ (2~fl) -1 e x p ( -  Ixl 2/2/3) 

Thus, the asymptotic distribution of X(t) is symmetric bivariate normal. In 
Section 3 we sharpen this result and show that the motion of the particle 
can be approximately described by a two-dimensional Wiener process. 

For random vectors U and V, the quantities L(U), L(U[ V), and 
L(U[ V= v) denote the distribution of U, the conditional distribution of U, 
given V, and the conditional distribution of U, given V= v, respectively. 
For any set A we set 1A(X)= 1 i f x e A  and =0  ifx-~A. 

2. D E R I V A T I O N  O F  T H E  D E N S I T Y  

L e t  

{ " t z ( t ) :=sup  n>~0 j~l~j~<t  

r(t) is the number of turns up to time t and obviously has a Poisson dis- 
tribution with parameter 2t. Let #, be the equidistribution on 
{x E ~21 Ix] = t}. Then L(X(t)l~(t) = 0) =/~,. We shall prove by induction 
that for n>~ 1, L(X(t)]z(t)=n) has a density f,(x]n) given by 

.ft(x I n ) =  (n/2~t2)[1 - (]x[/t)2](n-2)/21~o,o(x), n ~> 1 (2.1) 

It follows by the formula of total probability that 

L(X(t)) = L P(r(t) = n) L(X(t) lr(t) = n) 
t l  = 0  

= e 5" ll,+ ~-. L(X(t)[r(t) =n) (2.2) 
i 1 ~  ] " 

By (2.2), the density of X(t) on {x~ ~2[ Ix[ < t} is thus given by 

f , (x)=exp(-At)(2~t2)- '  ~ ~ 1 - ( ~ ) 2 1 ( n  2'/2 

flu 2) 1/2 2)1/2 
= 2--~ (t2 - ]xi exp[Z(t 2 - Ix[ - 2t] (2.3) 
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Hence it suffices to derive (2.1). Before proceeding, it is interesting to note 
that f t ( x ln )  is also the density of the first two coordinates of a random vec- 
tor with uniform distribution on the sphere { y e  N~+21 ly l  = t}.  

Let g,(x]s,e,n) be the conditional density of X(t) given that r ( t ) = n  
and Y ( l ) = y = s d ~ .  Let h(s ,~ln)  be the joint conditional density of the 
polar coordinates (s,c 0 of y(1) given that z ( t )=n .  For c~  [0,2~) and 
0 < s <  t we have 

P(~( t )=nt  Y(1)=sei~)(2~)-12e ~" 
h,(s, =In )=  

and 

/'('~(t) = n) 

2 _~ P ( r ( t - s ) = n - 1 )  
~ - - - - - C  

2~z P(r(t)  = n) 

2 _z~e ~(~ " ) ( 2 ( t - s ) ) " - l / ( n  - 1)! 

2~z e -  ;'t( 2t )~/n! 

g,(xls,  ~, n )=  f , _ , ( x -  se'~jn - 1) (2.5} 

In (2.4) we have used Bayes' formula and the relation 

P(r(t)  = n l y{1) = se,=) = P(r(t)  - "c(s) = n - 1 ] y(t) = sei~) 

= P(z(t  - s) = n - 1 ) (2.6) 

Relation (2.5) follows from the equation 

P ( X ( t ) s  BI Y( l l=se  i~, r ( t ) = n )  

= P ( X ( t - s ) e B  s d ~ l r ( t - s ) = n  - 1 )  (2.7) 

where, of course, B - s e i ~ =  { b - se i~Jb EB}  and B is a Borel set in R2. To 
see (2.7), note that y~l)= sei~ implies that the first turn occurs at time s so 
that in the time interval (s, t]  the direction changes n - 1  times, because 
r(t) = n. Further, one has to use the fact that the conditional distribution of 
X ( t ) -  X(s), given y ( l t=  sei~, is equal to L ( X ( t - s ) )  and that X ( t ) -  X(s) is 
conditionally independent of {X(t')10 ~< t' < s}, given that y(l) = sd~. 

Our induction proof of (2.1) is based on the identity 

f t (x ln)  = g,(xls,  o:,n)h,(s,~ln)dc~ds 

= 2 m , o ~ o  f ' - ' ( x - s d ~ l n - 1 )  1 -  deds (2 .8)  
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[the second equation follows from (2.4) and (2.5)]. Suppose that (2.1) 
holds for f t ( x ln -1)  for some n~>2. To prove (2.1) for ft(xln), we insert 
the expression for f , ( x l n -  1) into (2.8) and obtain 

f'(x]n)-n(n-1)4g2~ ~j0t{f~Tr( 1 ]x--sei~12~(n-3l/x-(t--~ ] ( t -s)  2 

• 1 -  1~o,, ,)(Ix-eS=t d~ ds 

n(n-1)4/r2t ~ f l { f ] ~  I ]x/tl2+u2-2u(x/t, e i ~ ) l ( " ( l _ u )  2 3)/2 
- J o  1 -  - 

X (1 --U)n-31[O,1)\ d~ du 

n(n -- 1 ) 1 

+ 2u ]xl c~ + arg x ) l  (" t ~t/'2 

xlE~176 d u ( 1  - u )  2 

(1 _ u)2 d~ du (2.9) 

Here ( , )  denotes the usual scalar product, and arg x e  [0, 2~z) is the angle 
between the vector x and the x~ axis. For the third equation note that 

(x/t, e i~ ) = (]xl/t) cos(c~ + arg x) 

In the fourth equation the substitution /3 = c~ + arg x is carried out in the 
inner integral. 

Next we change the order of integration; note that the integrand does 
not vanish only if 

0 < u < [1 - (Ixl/t)2]/2[1 - (Ixl/t) cos/~] (2.10) 

We denote the right-hand side of (2.10) by b(x, t, [~). Then, using the 
relation 

f~(x,t,,B) ( /d_ ~(n 3)/2 2b(x, t, fl) 
1 b ( x , t ,  f l ) ]  du-  n - 1  
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we obtain 

f ~ ( x l n ) -  ~-7r~- 1 - t - - Y - - 2 u  1 - - - c o s f l t  du dfl 

( 0  - cos 

_ n 1 -  ( 2 . 1 1 )  
21rt 2 

Finally, we have to show that  (2.1) also holds for n =  1. Under  the 
condit ion r ( t ) =  1 we have 

X(t )  = y ( l t +  ( t - I  Y~I)I) e i~ (2.12) 

It follows that  

IX(t)l 2 = 21 y~l )[ (t - I Y<a~l )(cos r / -  1 ) + t 2 (2.13) 

where q is independent  of y~ll and uniformly distr ibuted on [0, 2~). Con-  
ditionally on r( t )  = 1, J Y(111 is uniform on [0, t].  Since cos r/ has the den- 
sity ~ 1 ( 1 - u  2) ~/2, - 1  < u <  1, a s t ra ightforward calculation shows that  
IX(t)l has the density g,(u) = (u/t2)(1 - u2t -2) 1/2, 0 < u < t. By rota t ional  

symmetry,  

f , (x l  1)- - (27r lx i )  lg , ( rx l )  

N o w  (2.1) follows for n = 1. 
We finally ment ion that  the unboundedness  of f , ( x )  as Ix] I" t is caused 

by the contr ibut ion of f , (x [  1). For  n/> 2 the density f , ( x l n )  is bounded  on 
Ix[ < t. Given that  the direction changes n times up to t, the probabi l i ty  
that  c~ < IX(t)t < c~ + e is m o n o t o n e  increasing with respect to e s (0, t -  e) if 
n = 1 and m o n o t o n e  decreasing if n > 1. 

3. A S Y M P T O T I C  BEHAVIOR 

In Section 1 it was proved that  the relations t -~  oo, 2 -+  o% and 
t / 2 - - , / ? > 0  imply the convergence of X(t )  to a bivariate normal  dis- 
tribution. N o w  let us fix 2 > 0 and consider the rescaled process 

Xv(t)=v-1/2X(vI), r>~O, v > 0  (3.1) 

We shall show that  for all T > 0  the process X ~ =  ( X v ( t ) ) o ~ , ~ r  converges 
weakly to the two-dimensional  Wiener process W =  ( W(t))o<_, ~ r as v ~ 0% 
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where W(t) = (W~(t), W2(t)) and ml(/), I472(t ) are independent one-dimen- 
sional Wiener processes with drift 0 and E(Wi(t) 2) = t/22. Thus, for any 
continuous functional F: C[0, T ] - * R  we have F( X~ ) --. F( W) in dis- 
tribution. If the mean step length tends to zero and the time t is large, the 
motion of the particle can be approximately described by a Wiener process. 

In order to prove 

X,, -* Wweakly, as v -* oo (3.2) 

note that X,.(t) can be written as 

Xv( t )=v 1/2 y(j)+ey(~(~.,)+~) (3.3) 
, i =  1 

where ~e  [0, 1). We define the auxiliary process Y~= (Y~(t))o<.~r by 

E,.t] 
Y,.(t)=(2/v) ~/2 ~ Y(/), O<~t<<.T (3.4) 

j 1 

where [vt] denotes the largest integer ~< yr. Then the two-dimensional ver- 
sion of Donsker's invariance principle I12) yields Y~-* W weakly in the 
space D[0, T] of right-continuous functions on [0, T] with left-hand 
limits. The results of Billingsley (Ref. 12, pp. 143 148) on random changes 
of time say that for arbitrary positive-integer-valued random variables N~ 
for which there are constants a v e ~  such that N~/av--+el ( v - * m )  the 
process 

L = ( rN,(t))o.<,_< T 

tends to W in D[0, T]. The strong law of large numbers gives r(vt)/2vt -* 1 
almost surely. The proof in Ref. 12 can be easily imitated to yield 

r(vt)  

[~(vt)/t] -1/2 ~ Y~J)~ -* Wweakly (3.5) 
/ = 1  J O ~ t ~ T  

From (3.5) it will follow that X~ -* W in D[0, T] if we can prove that 

e ( y  I/2 sup IY(~("'l+l)l>e)-*O 
O<~I<~ T 

for all s > 0. By the strong law of large numbers, 
v0 > 0 such that 

P(~(vT) <~ 2vT(1 + e) for all v 7> Vo) > 1 - c5 

(v -* oo ) (3.6) 

for all c5 > 0 there is a 
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Hence for v ~> Vo we obtain 

P(v -v2 sup [y(z(v t )+l ) [  >~3) 
O<~t<~ T 

c5 + P(v -1/2 m a x  [ Y(J)[ > ~) 
1 ~<j~< [2vT(1 +e)] + 1 

=c~+ 1--P(~j<~evl /Zfor j= 1 ..... [2vT(1 + e ) ]  + 1) 

= c~ + 1 -- [1 - e x p ( - 2 e v l / Z ) ]  ~vr(l +~)l+ 1 

~ as v ~ o o  

Since 6 > 0 is arbitrary, (3.6) is proved. 
Since X~ and W are C[0, T]-valued, convergence in D[0, T] implies 

that in C[0, T]. Therefore, (3.2) is proved. 
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